The University of Jordan

Faculty of Engineering & Technology, Mechanical Engineering Department

System Dynamics and Control (1) (0904418)

2005 Course Catalog

Review of complex variables and Laplace transform .Poles and element transfer function and block diagram. Modeling of physical systems; electrical, mechanical, hydraulic and pneumatic systems. Linearization of nonlinear systems. System representations. Thermal, System block diagrams and signal flow graphs. Overall transfer function, block diagrams reduction techniques and Mason's gain formula. Time response analysis and performance indices of first and second order systems. Dominate poles of high order systems. Routh-Hurwitz stability criterion. Stability analysis using root locus. Bode diagrams and Nyquist stability criterion. Introduction to analysis using state-space equations.

Course						
Name & number	System Dynamics and Control (1) (0904372)					
Credits and contact hours	3 credits / Three 50 or two 75 minute lectures each week					
	Course Prerequisites					
Prerequisites by topic	ODEs, Laplace transforms, statics/dynamics, vibrations, thermodynamics, fluid, heat, circuits					
Prerequisites by course	0301202+ (0904222 or 0904312)					
Co-requisites by course	-					
Prerequisite for	0904419 Control Lab., 0904422 Engineering Measurements, 0904521 Robotics, 0904537 Design of Hydraulic and Pneumatic Systems, 0904580 Modern Control Systems., 0904583 Autotronics					

Instructors						
NameE-mailSectionOffice Hours				urs		
			Sun/Tue/Thu	Mon/Wed		
Dr. Musa Abdalla	musa.abdalla@ju.edu.jo	1	TBA	TBA		

Text Books							
	Text book 1						
Title, Author(s)	Modern Control Engineerin K. Ogata,	(Handouts)					
Publisher, Year, Edition	Prentice-Hall, latest Edition	-					
	References						
Books, Author(s)	R Dorf and Bishop, Modern Control System, Prentice Hall B. Kuo, Automatic Control System, Wiley						
Journals							
Internet links	http://fetweb.ju.edu.jo/staff/ME/JuTech						

Fall Semester 2015/2016

Measurable Student Outcomes (MSO) and Course Outcomes						
MSO	Course Outcomes					
MSO1+MSO3	 Ability to model and write differential equations and transfer functions to model system dynamics using Laplace transform 					
MSO5	2. Master block diagram manipulation techniques					
MSO1	3. Use design approach to model, analyze and control real dynamical systems					
MSO1	4. Analyze first, second and higher order systems and time response					
MSO5	 Analyze the stability, performance, and disturbance rejection characteristics of closed loop feedback systems 					
MSO3	6. Introduction to controller design to alter system behavior using PID controllers					
MSO1	 Utilize the graphical methods of Root locus/Bode plots for analysis and design of feedback loops 					
MSO9	8. Use of Matlab to simulate a control system's performance					
MSO3	9. Mechanical (thermal and applied) system design					
MSO4	10. Present control system design and analysis orally and in written format					

	Topics Covered						
Week	Topics	Chapters in Text					
1	Introduction: What is system dynamics? What is control? Terminologies, objectives of for						
	using controllers. Open and closed loop concepts	Chapter1					
2	Dynamical System Modeling: First Order system, System Response						
	Applications: Tank Level, Laplace Transform overview	Chapter 1					
3-4	Transfer Functions, System Response Analytically and using Matlab. Laplace Inverse using	Chapter 2					
	PFD. Input Testing Signals, Applications: RCL circuits						
5	Poles and Zeroes Concepts and their relation to response, S-Plane, Applications: Cruise	Chapter 2					
6-7	First Order System Performance Measures, 2 nd Order Systems Performance	Chapter 3					
8	Thermal Systems Modeling and Applications	Chapter 4					
9-10	Dynamical Systems Stability. Stability theorems Applications	Chapter5					
11-12	Root Locus Analysis and Matlab based design, Introduction to P-Controllers Design	Chapter 7					
13	PID Controller Design	Chapter8					
14	Introduction to Frequency Domain	Chapter 9					
15	Frequency Domain Analysis and Controllers Design	Chapter11					

Evaluation					
Assessment Tool	Expected Due Date	Weight			
Homework	One week after homework problems are assigned	5%			
Quizzes	Three to five quizzes.	10%			
Midterm Exam	According to the department schedule	35 %			
Final Exam+Project	According to the University final examination schedule	40 %+10%			

Contribution of Course to Meeting the Professional Component

The course contributes to build the fundamental basic concepts of design and analysis of dynamical systems.

Relationship to Program Outcomes (%)

PO #	1	2	3	4	5	6	7	8	9	10
%	Н		М		М				L	

Relationship to Mechanical Engineering Program Objectives

PEO1	PEO2	PEO3	PEO 4	PEO 5
\checkmark				

Prepared by: Dr Musa Abdalla, February, 2014